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1 Introduction 2.1 Features

People might ask how it is that they can see objects in Features, such as edges, lines, points, and regions, must be
depth, meaning that human vision is “three dimensional.” previously extracted to generate object hypotheses from a
The most common reply is that humans use the difference symbolic image description. The feature extraction proce-
between the images in our left and right eyes to judge dure usually uses a local operator and does not use any
depth. Many techniques have been proposed to Simu|atesp¢cific shapg information or contextual scene knowledge.
human vision with machines and to find those points that This process is often referred to dew-level) image seg-
human eyes seem to use as references to build more commMentation. The problem of image segmentation is still un-
plex models. If a machine is able to see well, then we tend solved, mainly pecause it is not mdependem of the overall
to call it intelligent. The area of artificial intelligend@l) task and there is no guarantee that the object darts,
uses computers and their computational ideas and methog®oundariesare completely visible.

to study intelligence. Al offers a new perspective and a new

methodology to make computers “intelligent.” Machine 2.2 Edge Maps

vision, however, must address many problems: A better approach is to derive a partial symbolic represen-

tation as opposed to a complete image segmentation. This
process would extract points, edges, lines, and regions from
gray-level and color images. Some operators are based on a
simple and isolated model feature such as an ideal step
edgé or a constant intensity regidrHowever, the assump-
tion that image features appear in isolation and that they
This paper intends to present solutions to some of the prob-belong to a single class is often invalid. We can see that
lems mentioned above. We address the problem of 2-Dedges, lines, and points often interact with each other
intermediate-level visual processing and derive a robustthrough composite edges or at image junctions.

and efficient method that processes a raw image signal over

seve_ral layers of abstraction to .produce mean!ngf_ul inter- 5 5 Edge Detection Methods

mediate level structures. In addition, both the primitive fea-
tures and the aggregated structures are integrated into
symbolic representation.

1. What information should be extracted?

2. How should this information be extracted?

3. How should this information be represented?
4. How should this information be used?

dntensity discontinuities are considered one of the primary
Image features that enable a scene to be segmented into
meaningful parts. Many methods have been defined to suit-
ably detect edge maps and some of tH#me ones we used

as inspiration for our multiresolution methodre briefly

2 Multiresolution Edge Detector described here.

Our goal is to analyze light intensity data from given input

images to describe models in the original scene. To sim-2-3.1 Masks

plify the process, we only consider trihedral objects, i.e., Point and line detection can be implemented by using
solid polyhedra bounded by planar faces where exactly simple masks that detect discontinuities, which is where
three faces meet at each vertex. these features are assumed to be lochted.
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2.3.2 First and second derivatives Second, wavelets have the power to decorrelate. This

We would like to take advantage of the fact that brightness Means that the representation of the data in terms of the
changes more rapidly in the edges than in other places.wavelet coefficientsy; is somehow more “compact” than
Such behavior can be described in a better way with the the original representation. In information-theory terms, we
first and second derivatives. The first derivative of bright- say that the entropy in the wavelet representation is smaller
ness has a maximum in the edge, and the second derivativéhan the original representation, and in approximation-
has a zero in that maximum. The generalization of the first theory terms, we say that we want to get an accurate ap-
derivative to 2-D is given by the gradie(®f). proximation of f by only using a small fraction of the
wavelet coefficients.

L This decorrelation is obtained by constructing wavelets
2.3.3 Gaussian filters that already resemble the data we want to represent. In
Some other methods find edges in smoothed and sub-other words, we would like the wavelets to have the same
sampled images rather than the original images to avoid correlation structure as the data. For instance, most signals
noise features and unreliable edges. The first edge-detectiomwe encounter every day have correlation in both space and
method using a Gaussian-shaped low-pass filter is de-frequency, i.e., samples that are spatially close are much

scribed as follows: more correlated that ones that are far apart, and frequencies
. , . , ) often occur in bands. If we want to analyze and represent
1. Filter signal using a Gaussian-shaped function: such signals, we need wavelets that are local in space and
h(xy)=exd — (C+y2)2ma?], frequency. Typically, this is achieved by building wavelets

that have compact suppadftbcalization in space that are
— 2 2 _ 2 2
H(u,v)=27%0" ext - mo*(W*+v?)/2], smooth(decay toward high frequenciesind that have van-

where o determines the cutoff frequency, with a ishing momentgdecay toward low frequencies

|arger0- Corresponding to a lower cutoff frequency_ Third .and |aSt, we Want to qU|Ck|y find the wavelet rep-
2. Use an edge detection method. resentation of the data, i.e., we want to switch between the

original representation of the data and its wavelet represen-
tation in a time proportional to the size of the dgs@ame-
2.3.4 Combining ideas thing that in algorithmic-complexity terms is known as

The previously described methods, as well as many othero(n)]' The_ fast decorrelation power of vyavelets is the key
edge detection methods, work well for the specific cases to applications such as data compression, fast data trans-

and problems they were created to solve. We usually baseMission, noise cancellation, signal recovery, and fast nu-
our method on a specific edge model. A more complete Merical algorithms.
approach would deal with several models under different
situations to give better and more complete edge maps. In
the next sections, we show how wavelets can be used to .
acquire a multiresolution representation of the input signal, 2-> Lifting Scheme
how to automatically apply a smoothing procedure by de- The basic idea behind lifting is that it provides a simple
fining a smoothing functioisuch as a Gaussigrand how  relationship between all resolution analyses that share the
to calculate the first and second derivatives to calculate thesame low-pass filter or high-pass filfefhe low-pass filter
gradients and represent edge pixels through several levelgrovides the coefficients of the refinement relation, which
of resolution. entirely determines the scaling function. The high-pass fil-
ter provides the coefficients that enable the linear combina-
24 Wavelets tion of several scaling functions to find the wavelet. Lifting

’ can be used to effortlessly custom-design wavelets. One,
It has become impossible to give the definition of a for example, could derive a family of biorthogonal wave-

wavelet! Basically, definitions become obsolete from one |ets associated to the interpolating Deslauriers-Dubuc scal-
day to the next due to fast growth of the research field and ing functiong using lifting *°

the high rate at which contributions are made. A very vague  The “|ifting scheme” "®1%~%5is a new approach for the
definition, but one that at least includes three of the main construction of families of wavelets that are independent of
features of wavelets is: “wavelets are building blocks that the Fourier transform. Constructing wavelets using lifting
can quickly decorrelate data. _ _ consists of three simple phases or stages: the first one
Let us analyze these three properties. First, wavelets arespy |Ts the data into two subsets, even and odd, the second
building blocks for general data sets or functions. In math- gne calculates the wavelet coefficieritsgh pass as the
ematical terms, we say that they form a basis or, more tyjjyre to PREDICT the odd set based on the even, and
generally, a frame. By this we mean that each element of g4y the third one UPDATES the even set using the
general class can be written in a stable way as a lineary,,glet coefficients to compute the scaling function coef-
combination of the wavelets. If the wavelets are denoted by fi~iants (low pass. The PREDICT phase ensures polyno-

¢ and the coefficients by;, a general functiorf can be  1jg| cancellation in the high pagsanishing moments of

written as the dual wavelétand the UPDATE phase ensures preser-
vation of moments in the low pagsanishing moments of
f:Z yithi . the primal wavelgt

The advantages of lifting are numerous:
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1. Lifting allows for an in-place implementation of the %*jf(xyy):f* z//k,-(x,y), k=1,2, 2
fast wavelet transform, a feature similar to the fast 2 2

Fourier transforn. with lﬂ;j(X,y) =2 2yk2-ix,27ly).

2. ltis p_articularly easy to build_ Wa\_/e_let transforms that The WT defined by Eq2) produces a sequence of vec-
map integers to integers using lifif These trans- 4 fields indexed by level of resolution. They are the gra-

for_ms are particularly u§eful for ha_lrdware implemen- dient of f(x,y) smoothed bys(x,y) at dyadic scales, or the
tation and for lossless image coding. multiresolution gradients: ' '

3. Lifting enables the construction of wavelets entirely
in the spatial domain, i.e., without making use of the vt (x y)=[ 7"} f(xy), 75f(x,y)]
Fourier transform. This means that it can be used to 2 2

build wavelets that are not necessarily translates or 1

dilates of one function. These wavelets are known as = 577 V(ez* (xy)

“second-generation wavelets” and typical examples

are wavelets adjusted to weight functions, irregular 1

samples? the spheré? or manifolds. This also en- = 521 VI* @ai(xy). 3
ables an easy way to introduce wavelets, which is

particularly useful for people without a strong math-  The multiresolution gradient representationfds com-
ematical backgrountf plete, because the WT defined by EB) is invertible. For

4. Every transform built with lifting is immediately in-  a multiresolution gradient representation over a finite num-
vertible where, the inverse transform has exactly the per of scales, &j<J, it is also necessary to include
same computational complexity as the forward s, f(x,y), which is the smoothed version bfat the coars-
transform?!-16 est scale, 2

5. Lifting allows for adaptive wavelet transforms, i.e., The multiresolution edge representation is built on the
one can start the analysis of a function from the multiresolution gradient representation. For this purpose, it
coarsest levels and then build the finer levels by re- is convenient to represent the multiresolution gradient in
fining only in the areas of interedt. magnitude-angle pairsp,if(x,y),8.if(x,y), where the

6. Lifting exposes the parallelism inherent in a wavelet magnitudep,;f(x,y) and angled,;f(x,y) are defined by
transform. All operations within one lifting step can
be done entirely in parallel. The order of the lifting  p,if(x,y)={[ 75 (x,y) 12+ [ 7 3f(x,y) 1?2 4
operations in the only part required to be sequential.

, i and
For our particular problem, feature extraction, we used

wavelets generated by LiftPatkwhich is a C library of

biorthogonal wavelets with vanishing moments. Refer to gzjf(x,y):arcta{
Ref. 11 for more details about LiftPack and the implemen-

tation of the lifting scheme.

73 xy)

—— (5)
7 5t (%)

A point (x,y) is considered a multiresolution edge point

, , _ at scale 2 if the magnitude of the gradienp,;f, attains a
2.6 Multiresolution Edge Representation local maximum there along the gradient directiénf. For
Our model of a multiresolution edge representation is basedeach scale 2 we collect the edge points along with the
on the local maxima of the wavelet transform. The wavelet corresponding values of the gradiefite., the wavelet
transform of a signal is a multiresolution decomposition transform valuesat that scale. The resulting local gradient
that is well localized in space and frequertéylhe multi- maxima set at scalel 2s then given by
resolution edge representation of signals was first described
by Mallat® and has evolved in two forms, based on multi-
resolution zero-crossings and multiresolution gradient - Z(f ):[[(Xi Y Vaif(Xi,yi)]
maxima, respectively. The latter, which is used in this pa-

per, was developed by Mallat and ZhotfgiVe give only a p2if(X;,y;) has local maximum at 6

brief review of the multiresolution representation for 2-D (xi,y;) along the directionf,f(x;,y;)|" (6)

images. For a detailed description, see Refs. 19 and 20.

Consider two oriented wavelets that are constructed asFor aJ-level 2-D WT, the collection

the partial derivatives of a smoothing functigrix,y):

{S2if (x,¥),[A#2i(F ) ]1<j<s} @)
J J

JHx,y) = X o(x,y) and g?(x,y)= W o(X,Y). (1) is called a multiresolution edge representation of the image

f(x,y).
i i i i ) This method enables us to extract an object’s features
Assume an image is a differentiable 2-D functibfx,y) through different resolutions. However, we want to get sub-

eL*(R?). The associated 2-D dyadic wavelet transform sampled versions of the original image for further calcula-
(WT) of an imagef at scale 2, at position §,y) and in tions at different resolutions. The multiresolution edge rep-
orientationk is defined as resentation proposed by Mallat does not subsample through
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different scales. We use instead the fast lifted wavelet 3.1 Contour Graph

transform(FLWT) to adapt the multiresolution edge repre- e detectors based on a local operator extract image fea-
sentation to our needs. tures in a local neighborhood without using specific shape
information or scene knowledge. They are unorganized and
represent isolated image events. The feature extraction pro-
cedure must also organize these local features to a more
The multiresolution edge maps obtained with the local complete symbolic image description. In our case, the edge
maxima operator described consist of both noise and truedetector produces an edge map in which each pixel consists
image features. Therefore, a thresholding operation must beof its local strength and orientation. Thus, the low-level
applied to the edge maps to separate the noise features fromprganization consists of linking edge pixels to create a
the true image features. This threshold is often set manuallymore complete contour representation—a contour graph.
by a trial-and-error procedure to produce a ‘“visually The more specific task of grouping these extracted contours
clean” edge representation. It is, however, necessary toto complete objects is not integrated in the work of this
know the noise characteristics to determine threshold paper, but it is mentioned that coplanar grouping and seg-
levels? ment stereo matching can be used to build full 3-D repre-
It has been demonstraféd® that the edge map thresh-  sentations of the objects. Once we have found points that
old can be derived from the distribution of gradient magni- belong to an edge, we must link them together to find the
tudes in the image. A method derives an automatic edgeactual edge. We use the method described in Ref. 3 for its
detection threshold by estimating the noise in the image. unique way of dealing with different object features in the
Let us establish that the original distribution of the gradient same algorithm.
magnitudes consists of two components: a noise and a sig-
nal component. Since noise in images is usually additive,
white Gaussian noise appears as the most prevalent model
to use. If we assume white Gaussian noise, the gradient3.2 Key Points

magnitudes of the noise are Rayleigh distributed. Due 10 \ye pave shown how to extract 1-D features such as edge/
the fact that the gradient magnitudes of the signal cOmMpo- jine points. However, even though those points might form
nent are often considerably stronger than the ones from themeaningful boundaries, we do not really know how the
noise component, the signal without the noise affects yoints are related to each other and to which boundaries
mainly the tail of the distribution. We want, therefore, to they belong. We could use a linking procedure with the
estimate the peak of the Rayleigh distribution from the 4 4ient magnitude and orientation to construct contours or
original distribution. It can be estimated by computing the gqges byt these 2-D features alone are not enough to give
mode of the ongma:c dﬁstrlbutLor(fRif. 24, Ich"’r‘]p' 1313 4 complete symbolic description of an object. In addition to
Given an estimatg of the peak of the Rayleigh distribu-  ¢4qeg, other 2-D image features, such as junctions, corners,
tion, the edge detection threshoidcan be chosena?:[o €X- and line-ends represent another class of important informa-
clude a certain amount of edge pixels due to noiséo tion that can serve as the definition of object boundaries.

remove noise edges with a risk probability @fan edge  First, they help to divide boundaries in a better way and

2.7 Noise Estimation

detection threshold help to extract meaningful shape decompositions. Also,
corner and junction features together with the directions of
r=¢&(—2In s)¥? (8) their constituent components often characterize objects in a

better way than edge fragments or corner and junction fea-

. tures alone. Second, many 2-D features occur in situations

should be used. We use a probability riskss£0.1% or  of occlusion and they can serve to indicate object contours
equivalently a threshold~3.716% for all experiments  even if the contrast is vanishing or null. We refer to these

(unless we say otherwiseThis threshold will enable us to  2-D features as key-points and they must be included in the
remove noise features. If weak and unreliable edges shouldsymbolic representation of objects.

also be removed, a higher threshold value must be selected.  The extraction of 2-D features is more straightforward
At this time, however, we do not have enough information than the corresponding nonmaximum suppression proce-
to decide which features are or are not relevant. This pro- dure for 1-D features. However, no method provides an
cess is discussed later entire solution to the classification of 2-D features, for ex-
ample inL-, I-, T-, Y-, and X-junctions. In general-case

. . . methods, key-points are usually defined as strong 2-D in-
3 Multiresolution Edgel Aggregation tensity varia}c?oels, i.e., the sigr)(al not only variesg in one
Intensity discontinuities are considered one of the primary direction, but also in other directions. One could extract
image features that enable a scene to be segmented inté&ey-points by analyzing the first and second derivatives in
meaningful parts. Many methods have been defined to suit-the direction of modulus channels. Model-based methods,
ably detect edge maps. However, these edge maps haven the contrary, work with a specific corner model looking
deficiencies: fragmentation, gaps at junctions, and clutter for areas that best match the model. If the classification is
and faulty connections. Also, object boundaries are not trivial with the model-based feature detectors, then the lo-
guaranteed to be contrast defined. Additional processing iscalization and detection tasks are by no means trivial. A
needed to obtain more complete and unambiguous bound-combined approach could alleviate these problems, in that
ary definitions that account for more global relationships the key-points are used to initialize a model-based ap-
among image featurés. proach.
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3.3 Edgel Aggregation Algorithm must extend the search region to solve this problem. How-
An independent representation of key-points can help in €Ver: the search region cannot extend too far because the
aggregating local edge evidence to larger, coherent pieceCOmputations involved increase dramatically. The next
of contour. The method represents the contrast-defined im-PiXel is found by evaluating the pixels contained in a di-
age features as a collection of meaningful parts, subdivided€Cted seéarch region, which extends 2 pixels from the cur-
at locations of high key-point evidence. Even though this '€nt position. Each directed search region consists of nine
idea is not new, previous implementations used postpro- cOntiguous paths. A primary selection among these paths is
cessing of binary edge maps to achieve segmentation,PaS€d on simple criteria. The remaining paths are then
rather than using independent representations of 2-D fea-r"?ml_(ed_ according to magn_ltude _strength and orientation
tures. Key-points have an active role making contours con- similarity and the best one is retained. Whenever the clas-

verge onto them and reducing problems, especially at bifur- Sification map is availabléedge or ling, the selection of
cations. The natural relationship between edges and key-the best path depends on the type consistency between the

points can provide a more accurate definition of the image path and that of the s_tz_:lrt-poi?\ll.:inally, the selected path
features. determines a new position and a new updated linking direc-

We describe a general purpose algorithm that is able to tion.
represent, at different levels of resolution, edges and/or
lines completely and accurately as well as their connections3.3.3  Where to stop
at corners, junctions and other important 2-D features. Con-
sidering the fact that edge and line operators usually pro-
duce unconnected pixel maps, the multiresolution edgel ag-
gregation algorithm should also be able to bridge these
small gaps(1 to 2 pixel3. An additional requirement, is
that the the algorithm should be independent of the edge
line operator.

The required data for the multiresolution edgel aggrega-
tion algorithm consists of those feature maps that multi-
resolution edge or line operators produce, i.e., the multi-
resolution magnitude, edge, and local orientation maps.
Additional maps, such as the multiresolution type classifi-

Key-points are used as a suitable stop condition for the
aggregation proce<s.This enables us to divide contours
into meaningful subsegments. The use of key-points also
solves/reduces the problem of finding the correct link at
/junctions because the contours converge on them. The
problem of imperfect localization of image features is
treated by using a catch region ok3 pixels around each
key-point. If the edgel aggregation algorithm converges
onto a catch region it may connect the current contour to
the key-point. Given the fact that key-point maps are not
always available, additional termination conditions are used
for robust performance. These conditions are when a con-

cation, general edge quality, and key-point maps, are op- . .
tional and will be incorporated only if they are supplied.  oUr segment occludes with an already established contour,
occludes with itself, or when there are no more pixels to

Three major tasks must be addressed in the design of alink
general purpose edgel aggregation algorithm: where to™ " . .
start, how to link, and where to stop. These tasks have to be dFl?urle 1_;?0W5 3||hthe ?r(])mp_o?ent (t)f the multiresolution
repeated at every level of resolution in order to obtain the edgel algorithm and how they interact.
multiresolution representation. The solutions to these issues

are presented next. 3.4 Postprocessing
Considering that we are analyzing polyhedral objects and
3.3.1 Where to start want a compact symbolic representation, we would like to

Linking is a sequential process. Therefore, it is important to obtain the maximum number of long and straight contours,
aggregate the significant contours before the weaker onesWhile at the same time keeping the number of curved con-
All edge/line pixels are assigned a start-point value that tours and endpoints as low as possible. This will be the
reflects their suitability to serve as seeds for the aggregationmain task of the postprocessing stage. The secondary task
process. The “optimal” start-point is defined as the point IS to reduce the number of spurious contour segments for a
which has two neighboring edge pixels of the same type much cleaner representation.

(edge/ling, is located in a region with homogeneous local ~ The 1-D and 2-D feature extraction procedures are
orientation, and has a pure 1-D general edge profile. Thisdomain-independent because they do not use any shape or
means that pixels close to significant 2-D image features contextual information. This is good for general applica-
should not be considered because the local orientation istions. However, we are dealing with man-made or regular
not reliable. See Refs. 26 and 3 for a detailed description of Objects. We now introduce shape information—the straight
the process. The algorithm then picks the current best start-contour—for a more customized processing.

point from a sorted list of start-points. All the start-points ~ The reorganization procedure depends on two main
on and along an established contour are invalidated orcomponents: curve partitioning and the definition of
eliminated to prevent multiple aggregation of the same con- Straight, curved, and closed contours.

tour. The start-points can further be separated into edge and

line start-points to allow the algorithm to deal with either 3 41  cyrve partitioning

only lines, only edges, or both together. i ) . )

We propose to use an iterative split and merge algorithm
. (Ref. 27, Chap. #because of its simple implementation,
3.3.2 How to link speed, and reliable performance even on smoothly chang-
If the algorithm is to bridge small gaps in the edge map, a ing curves. Given a contour, the algorithm consists of four
traditional 3x3 pixel neighborhood is not sufficient. One steps:
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Fig. 1 Multiresolution edgel aggregation showing the required (solid
line) and optional (dashed line) input for every module of the multi-
resolution edgel algorithm: (a) the input gray-scale image, (b) the
multiresolution operator magnitude map, (c) the multiresolution local
orientation map, (d) the multiresolution edge map, (e) the multireso-
lution general edge quality map, (f) the multiresolution type classifi-
cation map, (g) the multiresolution key-point map, and (h) the result-
ing multiresolution symbolic representation.

1. Construct the line between the contour's endpoints
and measure the maximum deviatibnof the curve
from that line.

If the absolute deviation exceeds some thresfigld
split the curve at that point, and replace the original
line with two new straight-line approximations be-
tween the old points and the new one.

Repeat recursively steps 1 and 2 for each new con-
tour segment until all the segments have small
enough deviations.

Finally, test consecutive segments to see if they can
be merged into a single straight line, without exceed-
ing the thresholdl' on deviation.

The thresholdl' need not to be a constatiypically 2 to 3
pixels), it can also be a functioh(d) of the Euclidean
distanced between the two endpoints of the current sub-
segment. A variable threshold allows the algorithm to con-
sider contours with a given maximum deviation as a
straight line if the distance between the endpoints is large
enough. In our case, is defined as follows

d=1
otherwise,

1+ Y Ioglo d:

L(d)=1]. ©

where the constant 1 sets the lower bound for the tolerance

and the parametey controls its increase, angis set to 1
by default. The fourth component of the algorithm is the
merging procedure. The algorithm starts with the two seg-

ments that have the largest sum of distances between the
endpoints. This guarantees that the algorithm always con-
structs straight lines as long as possible.

3.4.2 Curve labeling

For a robust symbolic representation, it is necessary to cor-
rectly classify the contours. We classify contours as closed,
curved, and straightA contour is closed if it has the same
endpoint at both ends. Open contours are classified as either
straight or curved. A contour is straight if its lengthis
larger than some minimurd, and if the maximum devia-
tion, from the line between its end-points, is smaller than
L(d). The contour is labeled curved if at least one of the
two conditions is not met. Notice that even though a con-
tour has a maximum deviation of O pixels, it is labeled
curved if its length is smaller thaah .

We mentioned that the edge detection threshold should
be selected according to an estimated level of image noise
and not to a hard threshold. The reason for this was to
avoid removing “weak” edges that could be part of stron-
ger structures. Now, we want to reorganize all contours and
endpoints to obtain contours as long and straight as pos-
sible, and how to remove obviously weak or spurious con-
tour segments.

Many ideas have been proposed to reorganize contour
segments and to remove weak edges. Most of them remove
clearly significant structures and produce unnecessarily in-
complete contour representations. A postprocessing proce-
dure must clearly satisfy specific requiremefgsme times
it is not even needed if the contour graph is “clean”
enough.

The split- and-merge procedure consists of the following
seven steps:

1. Merge: Suppress all endpoints with two connected
contours and replace the two segments by a single
one. If the contour is closed, the endpoint is not re-

moved.

. Split: A new set of break-points is computed for each
contour.

. Prune:Remove weak and curved contour segments if
they are not connected to other contours at both ends.
If a curved contour has an open end and its integrated
gradient magnitude is lower than the median gradient
magnitude among all contours at its level of resolu-
tion, the segment is pruned. Repeat this procedure
until there are no more weak and curved contour seg-
ments with and open end.

. Merge: Same as step 1.

. Split: Same as step 2.

. Merge: Group consecutive curved contours to build
longer curved contours.

. MultiMerge: If a contour segment is missing from
one or more levels of resolution, but it appears in two
or more levels of resolution in the multiresolution

symbolic representation, create a new contour seg-
ment in the levels in which the contour is missing.

)]

Steps 1 and 2 group smaller straight and curved segments
to longer straight contours. The output is a reorganized set
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Fig. 2 Components and flow of the postprocessing algorithm: (a) contour graph resulting from the
edgel aggregation algorithm and (b) final contour representation.

of contour graphs where each contour at every level of synthetic and real images. The sensitivity of the wavelet-
resolution is labeled either straight, closed, or curved. No based edge detector extracts edges in almost any type of
single pixel is removed in these two steps. Step 3 removeslighting conditions. Small gaps are bridged thanks to an
all weak and curved contour segments that have unreliableextended directional search mask. The automated noise de-
links. Steps 4 and 5 obtain the longest possible straighttector and postprocessing procedure help to remove noise
contour segments. Step 6 reduces the number of contoursand spurious edges as well as to recuperate missing edges
and endpoints. Step 7 takes advantage of the redundantsing the redundancy of the multiresolution representation.
information of the multiresolution representation and com-  Even though good results are obtained, the method is far
plete unconnected contour graphs at certain levels of reso-from being finished. The algorithm does depend on the
lution. quality of the edge maps. The extended directional search
The reason for applying the merge and split proceduresmask and the postprocessing step are unable to handle
before pruning the contours is that if the graph contains highly fragmented and highly clustered edge maps. Results
several weak and collinear “curved” segments they will all are unpredictable under these conditions. Adaptive proce-
be removed. If these smaller segments are first grouped todures for noise removal and multiresolution edge comple-

longer straight contours they will always remdim addi- tion seem to be the best options to solve these problems.
tion, the multimerge step is effective only if a missing edge Our work may also be complemented with segment stereo
is exactly matched in the other levels. matching and coplanar grouping to generate a complete
Figure 2 shows the components and flow of the postpro- 3-D symbolic representation of objects. Even though we
cessing algorithm described. worked with only simple polyhedral objects, the proposed
algorithm is perfectly adaptable to work with any type of
4 Conclusions and Future Work objects.

A multiresolution feature extraction methodology has been
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